Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Medicine (Baltimore) ; 102(23): e33912, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20234985

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is considered a risk factor for severe COVID-19, but the mechanism remains unknown. This study used bioinformatics to help define the relationship between these diseases. The GSE147507 (COVID-19), GSE126848 (NAFLD), and GSE63067 (NAFLD-2) datasets were screened using the Gene Expression Omnibus. Common differentially expressed genes were then identified using a Venn diagram. Gene ontology analysis and KEGG pathway enrichment were performed on the differentially expressed genes. A protein-protein interaction network was also constructed using the STRING platform, and key genes were identified using the Cytoscape plugin. GES63067 was selected for validation of the results. Analysis of ferroptosis gene expression during the development of the 2 diseases and prediction of their upstream miRNAs and lncRNAs. In addition, transcription factors (TFs) and miRNAs related to key genes were identified. Effective drugs that act on target genes were found in the DSigDB. The GSE147507 and GSE126848 datasets were crossed to obtain 28 co-regulated genes, 22 gene ontology terms, 3 KEGG pathways, and 10 key genes. NAFLD may affect COVID-19 progression through immune function and inflammatory signaling pathways. CYBB was predicted to be a differential ferroptosis gene associated with 2 diseases, and the CYBB-hsa-miR-196a/b-5p-TUG1 regulatory axis was identified. TF-gene interactions and TF-miRNA coregulatory network were constructed successfully. A total of 10 drugs, (such as Eckol, sulfinpyrazone, and phenylbutazone) were considered as target drugs for Patients with COVID-19 and NAFLD. This study identified key gene and defined molecular mechanisms associated with the progression of COVID-19 and NAFLD. COVID-19 and NAFLD progression may regulate ferroptosis through the CYBB-hsa-miR-196a/b-5p-TUG1 axis. This study provides additional drug options for the treatment of COVID-19 combined with NAFLD disease.


Subject(s)
COVID-19 , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Systems Biology , Gene Expression Profiling/methods , COVID-19/genetics , MicroRNAs/genetics , Computational Biology/methods , Gene Regulatory Networks
3.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2299235

ABSTRACT

Cardiovascular complications combined with COVID-19 (SARS-CoV-2) lead to a poor prognosis in patients. The common pathogenesis of ischemic cardiomyopathy (ICM) and COVID-19 is still unclear. Here, we explored potential molecular mechanisms and biomarkers for ICM and COVID-19. Common differentially expressed genes (DEGs) of ICM (GSE5406) and COVID-19 (GSE164805) were identified using GEO2R. We performed enrichment and protein-protein interaction analyses and screened key genes. To confirm the diagnostic performance for these hub genes, we used external datasets (GSE116250 and GSE211979) and plotted ROC curves. Transcription factor and microRNA regulatory networks were constructed for the validated hub genes. Finally, drug prediction and molecular docking validation were performed using cMAP. We identified 81 common DEGs, many of which were enriched in terms of their relation to angiogenesis. Three DEGs were identified as key hub genes (HSP90AA1, HSPA9, and SRSF1) in the protein-protein interaction analysis. These hub genes had high diagnostic performance in the four datasets (AUC > 0.7). Mir-16-5p and KLF9 transcription factor co-regulated these hub genes. The drugs vindesine and ON-01910 showed good binding performance to the hub genes. We identified HSP90AA1, HSPA9, and SRSF1 as markers for the co-pathogenesis of ICM and COVID-19, and showed that co-pathogenesis of ICM and COVID-19 may be related to angiogenesis. Vindesine and ON-01910 were predicted as potential therapeutic agents. Our findings will contribute to a deeper understanding of the comorbidity of ICM with COVID-19.


Subject(s)
COVID-19 , Cardiomyopathies , MicroRNAs , Myocardial Ischemia , Humans , Systems Biology , Molecular Docking Simulation , Vindesine , COVID-19/complications , COVID-19/epidemiology , COVID-19/genetics , SARS-CoV-2 , Computational Biology , Myocardial Ischemia/epidemiology , Myocardial Ischemia/genetics , Comorbidity , MicroRNAs/genetics , Biomarkers , Transcription Factors , Gene Expression Profiling
4.
OMICS ; 27(5): 205-214, 2023 05.
Article in English | MEDLINE | ID: covidwho-2293901

ABSTRACT

A comprehensive knowledge on systems biology of severe acute respiratory syndrome coronavirus 2 is crucial for differential diagnosis of COVID-19. Interestingly, the radiological and pathological features of COVID-19 mimic that of hypersensitivity pneumonitis (HP), another pulmonary fibrotic phenotype. This motivated us to explore the overlapping pathophysiology of COVID-19 and HP, if any, and using a systems biology approach. Two datasets were obtained from the Gene Expression Omnibus database (GSE147507 and GSE150910) and common differentially expressed genes (DEGs) for both diseases identified. Fourteen common DEGs, significantly altered in both diseases, were found to be implicated in complement activation and growth factor activity. A total of five microRNAs (hsa-miR-1-3p, hsa-miR-20a-5p, hsa-miR-107, hsa-miR-16-5p, and hsa-miR-34b-5p) and five transcription factors (KLF6, ZBTB7A, ELF1, NFIL3, and ZBT33) exhibited highest interaction with these common genes. Next, C3, CFB, MMP-9, and IL1A were identified as common hub genes for both COVID-19 and HP. Finally, these top-ranked genes (hub genes) were evaluated using random forest classifier to discriminate between the disease and control group (coronavirus disease 2019 [COVID-19] vs. controls, and HP vs. controls). This supervised machine learning approach demonstrated 100% and 87.6% accuracy in differentiating COVID-19 from controls, and HP from controls, respectively. These findings provide new molecular leads that inform COVID-19 and HP diagnostics and therapeutics research and innovation.


Subject(s)
Alveolitis, Extrinsic Allergic , COVID-19 , MicroRNAs , Humans , COVID-19/genetics , Systems Biology , Cell Line, Tumor , Computational Biology , Transcription Factors , DNA-Binding Proteins , MicroRNAs/genetics , Machine Learning
5.
Front Immunol ; 13: 1061290, 2022.
Article in English | MEDLINE | ID: covidwho-2261362

ABSTRACT

The systemic bio-organization of humans and other mammals is essentially "preprogrammed", and the basic interacting units, the cells, can be crudely mapped into discrete sets of developmental lineages and maturation states. Over several decades, however, and focusing on the immune system, we and others invoked evidence - now overwhelming - suggesting dynamic acquisition of cellular properties and functions, through tuning, re-networking, chromatin remodeling, and adaptive differentiation. The genetically encoded "algorithms" that govern the integration of signals and the computation of new states are not fully understood but are believed to be "smart", designed to enable the cells and the system to discriminate meaningful perturbations from each other and from "noise". Cellular sensory and response properties are shaped in part by recurring temporal patterns, or features, of the signaling environment. We compared this phenomenon to associative brain learning. We proposed that interactive cell learning is subject to selective pressures geared to performance, allowing the response of immune cells to injury or infection to be progressively coordinated with that of other cell types across tissues and organs. This in turn is comparable to supervised brain learning. Guided by feedback from both the tissue itself and the neural system, resident or recruited antigen-specific and innate immune cells can eradicate a pathogen while simultaneously sustaining functional homeostasis. As informative memories of immune responses are imprinted both systemically and within the targeted tissues, it is desirable to enhance tissue preparedness by incorporating attenuated-pathogen vaccines and informed choice of tissue-centered immunomodulators in vaccination schemes. Fortunately, much of the "training" that a living system requires to survive and function in the face of disturbances from outside or within is already incorporated into its design, so it does not need to deep-learn how to face a new challenge each time from scratch. Instead, the system learns from experience how to efficiently select a built-in strategy, or a combination of those, and can then use tuning to refine its organization and responses. Efforts to identify and therapeutically augment such strategies can take advantage of existing integrative modeling approaches. One recently explored strategy is boosting the flux of uninfected cells into and throughout an infected tissue to rinse and replace the infected cells.


Subject(s)
Systems Biology , Vaccines , Animals , Humans , Immune System/physiology , Signal Transduction , Homeostasis , Mammals
6.
Cytokine ; 166: 156187, 2023 06.
Article in English | MEDLINE | ID: covidwho-2279243

ABSTRACT

COVID-19 is associated with dysregulation of several genes and signaling pathways. Based on the importance of expression profiling in identification of the pathogenesis of COVID-19 and proposing novel therapies for this disorder, we have employed an in silico approach to find differentially expressed genes between COVID-19 patients and healthy controls and their relevance with cellular functions and signaling pathways. We obtained 630 DEmRNAs, including 486 down-regulated DEGs (such as CCL3 and RSAD2) and 144 up-regulated DEGs (such as RHO and IQCA1L), and 15 DElncRNAs, including 9 down-regulated DElncRNAs (such as PELATON and LINC01506) and 6 up-regulated DElncRNAs (such as AJUBA-DT and FALEC). The PPI network of DEGs showed the presence of a number immune-related genes such as those coding for HLA molecules and interferon regulatory factors. Taken together, these results highlight the importance of immune-related genes and pathways in the pathogenesis of COVID-19 and suggest novel targets for treatment of this disorder.


Subject(s)
COVID-19 , Gene Expression Profiling , Humans , Gene Expression Profiling/methods , Systems Biology , SARS-CoV-2/genetics , Computational Biology/methods , COVID-19/genetics , RNA-Seq , LIM Domain Proteins
7.
Medicine (Baltimore) ; 101(49): e32100, 2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2191103

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease (COVID-19), has been devastated by COVID-19 in an increasing number of countries and health care systems around the world since its announcement of a global pandemic on 11 March 2020. During the pandemic, emerging novel viral mutant variants have caused multiple outbreaks of COVID-19 around the world and are prone to genetic evolution, causing serious damage to human health. As confirmed cases of COVID-19 spread rapidly, there is evidence that SARS-CoV-2 infection involves the central nervous system (CNS) and peripheral nervous system (PNS), directly or indirectly damaging neurons and further leading to neurodegenerative diseases (ND), but the molecular mechanisms of ND and CVOID-19 are unknown. We employed transcriptomic profiling to detect several major diseases of ND: Alzheimer 's disease (AD), Parkinson' s disease (PD), and multiple sclerosis (MS) common pathways and molecular biomarkers in association with COVID-19, helping to understand the link between ND and COVID-19. There were 14, 30 and 19 differentially expressed genes (DEGs) between COVID-19 and Alzheimer 's disease (AD), Parkinson' s disease (PD) and multiple sclerosis (MS), respectively; enrichment analysis showed that MAPK, IL-17, PI3K-Akt and other signaling pathways were significantly expressed; the hub genes (HGs) of DEGs between ND and COVID-19 were CRH, SST, TAC1, SLC32A1, GAD2, GAD1, VIP and SYP. Analysis of transcriptome data suggests multiple co-morbid mechanisms between COVID-19 and AD, PD, and MS, providing new ideas and therapeutic strategies for clinical prevention and treatment of COVID-19 and ND.


Subject(s)
Alzheimer Disease , COVID-19 , Multiple Sclerosis , Neurodegenerative Diseases , Parkinson Disease , Humans , SARS-CoV-2 , Systems Biology , Phosphatidylinositol 3-Kinases , Computational Biology , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/genetics
8.
Front Immunol ; 13: 1052850, 2022.
Article in English | MEDLINE | ID: covidwho-2142039

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a contemporary hazard to people. It has been known that COVID-19 can both induce heart failure (HF) and raise the risk of patient mortality. However, the mechanism underlying the association between COVID-19 and HF remains unclear. The common molecular pathways between COVID-19 and HF were identified using bioinformatic and systems biology techniques. Transcriptome analysis was performed to identify differentially expressed genes (DEGs). To identify gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways, common DEGs were used for enrichment analysis. The results showed that COVID-19 and HF have several common immune mechanisms, including differentiation of T helper (Th) 1, Th 2, Th 17 cells; activation of lymphocytes; and binding of major histocompatibility complex class I and II protein complexes. Furthermore, a protein-protein interaction network was constructed to identify hub genes, and immune cell infiltration analysis was performed. Six hub genes (FCGR3A, CD69, IFNG, CCR7, CCL5, and CCL4) were closely associated with COVID-19 and HF. These targets were associated with immune cells (central memory CD8 T cells, T follicular helper cells, regulatory T cells, myeloid-derived suppressor cells, plasmacytoid dendritic cells, macrophages, eosinophils, and neutrophils). Additionally, transcription factors, microRNAs, drugs, and chemicals that are closely associated with COVID-19 and HF were identified through the interaction network.


Subject(s)
COVID-19 , Heart Failure , Humans , Systems Biology , Computational Biology , SARS-CoV-2 , Molecular Targeted Therapy , Heart Failure/genetics
9.
Eur J Med Res ; 27(1): 251, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2115714

ABSTRACT

BACKGROUND: Patients with non-alcoholic fatty liver disease (NAFLD) may be more susceptible to coronavirus disease 2019 (COVID-19) and even more likely to suffer from severe COVID-19. Whether there is a common molecular pathological basis for COVID-19 and NAFLD remains to be identified. The present study aimed to elucidate the transcriptional alterations shared by COVID-19 and NAFLD and to identify potential compounds targeting both diseases. METHODS: Differentially expressed genes (DEGs) for COVID-19 and NAFLD were extracted from the GSE147507 and GSE89632 datasets, and common DEGs were identified using the Venn diagram. Subsequently, we constructed a protein-protein interaction (PPI) network based on the common DEGs and extracted hub genes. Then, we performed gene ontology (GO) and pathway analysis of common DEGs. In addition, transcription factors (TFs) and miRNAs regulatory networks were constructed, and drug candidates were identified. RESULTS: We identified a total of 62 common DEGs for COVID-19 and NAFLD. The 10 hub genes extracted based on the PPI network were IL6, IL1B, PTGS2, JUN, FOS, ATF3, SOCS3, CSF3, NFKB2, and HBEGF. In addition, we also constructed TFs-DEGs, miRNAs-DEGs, and protein-drug interaction networks, demonstrating the complex regulatory relationships of common DEGs. CONCLUSION: We successfully extracted 10 hub genes that could be used as novel therapeutic targets for COVID-19 and NAFLD. In addition, based on common DEGs, we propose some potential drugs that may benefit patients with COVID-19 and NAFLD.


Subject(s)
COVID-19 , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Gene Regulatory Networks , Systems Biology , Gene Expression Profiling , Computational Biology , COVID-19/genetics , MicroRNAs/genetics
10.
OMICS ; 26(11): 608-621, 2022 11.
Article in English | MEDLINE | ID: covidwho-2087719

ABSTRACT

COVID-19 is a systemic disease affecting tissues and organs, including and beyond the lung. Apart from the current pandemic context, we also have vastly inadequate knowledge of consequences of repeated exposures to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus causing COVID-19, in multiple organ systems and the whole organism scales when the disease evolves from a pandemic to an endemic state. This calls for a systems biology and systems medicine approach and unpacking the effects of COVID-19 in lung as well as other tissues. We report here original findings from transcriptomics analyses and differentially expressed genes (DEGs) in lung samples from 60 patients and 27 healthy controls, and in whole blood samples from 255 patients and 103 healthy individuals. A total of 11 datasets with RNA-seq transcriptomic data were obtained from the Gene Expression Omnibus and the European Nucleotide Archive. The identified DEGs were used to construct protein interaction and functional networks and to identify related pathways and miRNAs. We found 35 DEGs common between lung and the whole blood, and importantly, 2 novel genes, namely CYP1B1 and TNFAIP6, which have not been previously implicated with COVID-19. We also identified four novel miRNA potential regulators, hsa-mir-192-5p, hsa-mir-221-3p, hsa-mir-4756-3p, and hsa-mir-10a-5p, implicated in lung or other diseases induced by coronaviruses. In summary, these findings offer new molecular leads and insights to unpack COVID-19 systems biology in a whole organism context and might inform future antiviral drug, diagnostics, and vaccine discovery efforts.


Subject(s)
COVID-19 , MicroRNAs , Humans , Transcriptome/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Systems Biology , MicroRNAs/metabolism , Lung/metabolism , Computational Biology
11.
Front Immunol ; 13: 988479, 2022.
Article in English | MEDLINE | ID: covidwho-2065517

ABSTRACT

Background: The coronavirus disease (COVID-19) pandemic has posed a significant challenge for global health systems. Increasing evidence shows that asthma phenotypes and comorbidities are major risk factors for COVID-19 symptom severity. However, the molecular mechanisms underlying the association between COVID-19 and asthma are poorly understood. Therefore, we conducted bioinformatics and systems biology analysis to identify common pathways and molecular biomarkers in patients with COVID-19 and asthma, as well as potential molecular mechanisms and candidate drugs for treating patients with both COVID-19 and asthma. Methods: Two sets of differentially expressed genes (DEGs) from the GSE171110 and GSE143192 datasets were intersected to identify common hub genes, shared pathways, and candidate drugs. In addition, murine models were utilized to explore the expression levels and associations of the hub genes in asthma and lung inflammation/injury. Results: We discovered 157 common DEGs between the asthma and COVID-19 datasets. A protein-protein-interaction network was built using various combinatorial statistical approaches and bioinformatics tools, which revealed several hub genes and critical modules. Six of the hub genes were markedly elevated in murine asthmatic lungs and were positively associated with IL-5, IL-13 and MUC5AC, which are the key mediators of allergic asthma. Gene Ontology and pathway analysis revealed common associations between asthma and COVID-19 progression. Finally, we identified transcription factor-gene interactions, DEG-microRNA coregulatory networks, and potential drug and chemical-compound interactions using the hub genes. Conclusion: We identified the top 15 hub genes that can be used as novel biomarkers of COVID-19 and asthma and discovered several promising candidate drugs that might be helpful for treating patients with COVID-19 and asthma.


Subject(s)
Asthma , COVID-19 , MicroRNAs , Animals , Asthma/genetics , Biomarkers, Tumor/genetics , COVID-19/genetics , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Interleukin-13/genetics , Interleukin-5/genetics , Mice , MicroRNAs/genetics , Systems Biology , Transcription Factors/genetics
13.
Microb Pathog ; 169: 105677, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1936991

ABSTRACT

Patients admitted to the hospital with coronavirus disease (COVID-19) are at risk for acquiring mycotic infections in particular Candidemia. Candida albicans (C. albicans) constitutes an important component of the human mycobiome and the most common cause of invasive fungal infections. Invasive yeast infections are gaining interest among the scientific community as a consequence of complications associated with severe COVID-19 infections. Early identification and surveillance for Candida infections is critical for decreasing the COVID-19 mortality. Our current study attempted to understand the molecular-level interactions between the human genes in different organs during systematic candidiasis. Our research findings have shed light on the molecular events that occur during Candidiasis in organs such as the kidney, liver, and spleen. The differentially expressed genes (up and down-regulated) in each organ will aid in designing organ-specific therapeutic protocols for systemic candidiasis. We observed organ-specific immune responses such as the development of the acute phase response in the liver; TGF-pathway and genes involved in lymphocyte activation, and leukocyte proliferation in the kidney. We have also observed that in the kidney, filament production, up-regulation of iron acquisition mechanisms, and metabolic adaptability are aided by the late initiation of innate defense mechanisms, which is likely related to the low number of resident immune cells and the sluggish recruitment of new effector cells. Our findings point to major pathways that play essential roles in specific organs during systemic candidiasis. The hub genes discovered in the study can be used to develop novel drugs for clinical management of Candidiasis.


Subject(s)
COVID-19 , Candidiasis , Candida albicans , Candidiasis/microbiology , Gene Expression , Humans , Systems Biology
14.
Viruses ; 14(7)2022 06 23.
Article in English | MEDLINE | ID: covidwho-1911649

ABSTRACT

More than two years on, the COVID-19 pandemic continues to wreak havoc around the world and has battle-tested the pandemic-situation responses of all major global governments. Two key areas of investigation that are still unclear are: the molecular mechanisms that lead to heterogenic patient outcomes, and the causes of Post COVID condition (AKA Long-COVID). In this paper, we introduce the HYGIEIA project, designed to respond to the enormous challenges of the COVID-19 pandemic through a multi-omic approach supported by network medicine. It is hoped that in addition to investigating COVID-19, the logistics deployed within this project will be applicable to other infectious agents, pandemic-type situations, and also other complex, non-infectious diseases. Here, we first look at previous research into COVID-19 in the context of the proteome, metabolome, transcriptome, microbiome, host genome, and viral genome. We then discuss a proposed methodology for a large-scale multi-omic longitudinal study to investigate the aforementioned biological strata through high-throughput sequencing (HTS) and mass-spectrometry (MS) technologies. Lastly, we discuss how a network medicine approach can be used to analyze the data and make meaningful discoveries, with the final aim being the translation of these discoveries into the clinics to improve patient care.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/complications , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Longitudinal Studies , Metabolomics/methods , Pandemics , Systems Biology/methods , Post-Acute COVID-19 Syndrome
15.
ESC Heart Fail ; 9(5): 2937-2954, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1894590

ABSTRACT

AIMS: The co-morbidities contribute to the inferior prognosis of COVID-19 patients. Recent reports suggested that the higher co-morbidity rate between COVID-19 and heart failure (HF) leads to increased mortality. However, the common pathogenic mechanism between them remained elusive. Here, we aimed to reveal underlying molecule mechanisms and genetic correlation between COVID-19 and HF, providing a new perspective on current clinical management for patients with co-morbidity. METHODS: The gene expression profiles of HF (GSE26887) and COVID-19 (GSE147507) were retrieved from the GEO database. After identifying the common differentially expressed genes (|log2FC| > 1 and adjusted P < 0.05), integrated analyses were performed, namely, enrichment analyses, protein-protein interaction network, module construction, critical gene identification, and functional co-expression analysis. The performance of critical genes was validation combining hierarchical clustering, correlation, and principal component analysis in external datasets (GSE164805 and GSE9128). Potential transcription factors and miRNAs were obtained from the JASPER and RegNetwork repository used to construct co-regulatory networks. The candidate drug compounds in potential genetic link targets were further identified using the DSigDB database. RESULTS: The alteration of 12 genes was identified as a shared transcriptional signature, with the role of immune inflammatory pathway, especially Toll-like receptor, NF-kappa B, chemokine, and interleukin-related pathways that primarily emphasized in response to SARS-CoV-2 complicated with HF. Top 10 critical genes (TLR4, TLR2, CXCL8, IL10, STAT3, IL1B, TLR1, TP53, CCL20, and CXCL10) were identified from protein-protein interaction with topological algorithms. The unhealthy microbiota status and gut-heart axis in co-morbidity were identified as potential disease roads in bridging pathogenic mechanism, and lipopolysaccharide acts as a potential marker for monitoring HF during COVID-19. For transcriptional and post-transcriptional levels, regulation networks tightly coupling with both disorders were constructed, and significant regulator signatures with high interaction degree, especially FOXC1, STAT3, NF-κB1, miR-181, and miR-520, were detected to regulate common differentially expressed genes. According to genetic links targets, glutathione-based antioxidant strategy combined with muramyl dipeptide-based microbe-derived immunostimulatory therapies was identified as promising anti-COVID-19 and anti-HF therapeutics. CONCLUSIONS: This study identified shared transcriptomic and corresponding regulatory signatures as emerging therapeutic targets and detected a set of pharmacologic agents targeting genetic links. Our findings provided new insights for underlying pathogenic mechanisms between COVID-19 and HF.


Subject(s)
COVID-19 , Heart Failure , MicroRNAs , Humans , COVID-19/epidemiology , COVID-19/genetics , Systems Biology , SARS-CoV-2/genetics , Heart Failure/epidemiology , Heart Failure/genetics
16.
Sci Adv ; 8(22): eabm2510, 2022 06 03.
Article in English | MEDLINE | ID: covidwho-1874488

ABSTRACT

Despite the availability of highly efficacious vaccines, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lacks effective drug treatment, which results in a high rate of mortality. To address this therapeutic shortcoming, we applied a systems biology approach to the study of patients hospitalized with severe COVID. We show that, at the time of hospital admission, patients who were equivalent on the clinical ordinal scale displayed significant differential monocyte epigenetic and transcriptomic attributes between those who would survive and those who would succumb to COVID-19. We identified messenger RNA metabolism, RNA splicing, and interferon signaling pathways as key host responses overactivated by patients who would not survive. Those pathways are prime drug targets to reduce mortality of critically ill patients with COVID-19, leading us to identify tacrolimus, zotatifin, and nintedanib as three strong candidates for treatment of severely ill patients at the time of hospital admission.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2 , Systems Biology
17.
Methods Mol Biol ; 2452: 317-351, 2022.
Article in English | MEDLINE | ID: covidwho-1844274

ABSTRACT

The unprecedented scientific achievements in combating the COVID-19 pandemic reflect a global response informed by unprecedented access to data. We now have the ability to rapidly generate a diversity of information on an emerging pathogen and, by using high-performance computing and a systems biology approach, we can mine this wealth of information to understand the complexities of viral pathogenesis and contagion like never before. These efforts will aid in the development of vaccines, antiviral medications, and inform policymakers and clinicians. Here we detail computational protocols developed as SARS-CoV-2 began to spread across the globe. They include pathogen detection, comparative structural proteomics, evolutionary adaptation analysis via network and artificial intelligence methodologies, and multiomic integration. These protocols constitute a core framework on which to build a systems-level infrastructure that can be quickly brought to bear on future pathogens before they evolve into pandemic proportions.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Artificial Intelligence , Humans , Pandemics/prevention & control , Systems Biology
18.
Int J Mol Sci ; 23(7)2022 Mar 26.
Article in English | MEDLINE | ID: covidwho-1834806

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic is currently raging around the world at a rapid speed. Among COVID-19 patients, SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) is the main contribution to the high ratio of morbidity and mortality. However, clinical manifestations between SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS are quite common, and their therapeutic treatments are limited because the intricated pathophysiology having been not fully understood. In this study, to investigate the pathogenic mechanism of SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS, first, we constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via database mining. With the help of host-pathogen RNA sequencing (RNA-Seq) data, real HPI-GWGEN of COVID-19-associated ARDS and non-viral ARDS were obtained by system modeling, system identification, and Akaike information criterion (AIC) model order selection method to delete the false positives in candidate HPI-GWGEN. For the convenience of mitigation, the principal network projection (PNP) approach is utilized to extract core HPI-GWGEN, and then the corresponding core signaling pathways of COVID-19-associated ARDS and non-viral ARDS are annotated via their core HPI-GWGEN by KEGG pathways. In order to design multiple-molecule drugs of COVID-19-associated ARDS and non-viral ARDS, we identified essential biomarkers as drug targets of pathogenesis by comparing the core signal pathways between COVID-19-associated ARDS and non-viral ARDS. The deep neural network of the drug-target interaction (DNN-DTI) model could be trained by drug-target interaction databases in advance to predict candidate drugs for the identified biomarkers. We further narrowed down these predicted drug candidates to repurpose potential multiple-molecule drugs by the filters of drug design specifications, including regulation ability, sensitivity, excretion, toxicity, and drug-likeness. Taken together, we not only enlighten the etiologic mechanisms under COVID-19-associated ARDS and non-viral ARDS but also provide novel therapeutic options for COVID-19-associated ARDS and non-viral ARDS.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Respiratory Distress Syndrome , Biomarkers , COVID-19/complications , Drug Design , Drug Repositioning , Humans , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , SARS-CoV-2 , Systems Biology
19.
Biomolecules ; 12(2)2022 01 22.
Article in English | MEDLINE | ID: covidwho-1649815

ABSTRACT

The sudden outbreak and worldwide spread of the SARS-CoV-2 pandemic pushed the scientific community to find fast solutions to cope with the health emergency. COVID-19 complexity, in terms of clinical outcomes, severity, and response to therapy suggested the use of multifactorial strategies, characteristic of the network medicine, to approach the study of the pathobiology. Proteomics and interactomics especially allow to generate datasets that, reduced and represented in the forms of networks, can be analyzed with the tools of systems biology to unveil specific pathways central to virus-human host interaction. Moreover, artificial intelligence tools can be implemented for the identification of druggable targets and drug repurposing. In this review article, we provide an overview of the results obtained so far, from a systems biology perspective, in the understanding of COVID-19 pathobiology and virus-host interactions, and in the development of disease classifiers and tools for drug repurposing.


Subject(s)
COVID-19 , Systems Biology , Animals , Artificial Intelligence , Drug Repositioning , Host Microbial Interactions , Humans
SELECTION OF CITATIONS
SEARCH DETAIL